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"Many theorems of approximation theory depend on the fact that a
polynomial of degree n cannot change too rapidly; in other words, its
derivative cannot be too large," Lorentz remarked in Ref. [11, p. 39]. Quan­
titative statements of this fact are given by two classical inequalities [11,
pp. 39-41; 3, pp. 89-91].

Markov's inequality. If Pn is a polynomial of degree at most n, then

(1)

the norm being the supremum norm on [-1,1]. Inequality (1) becomes an
equality for the nth degree Chebyshev polynomial cos(n arccos(x)). ( A nice
discussion of the origin of (1) in a problem in chemistry considered by
Mendeleev, the inventor of the periodic table, is given in [1 D.

Bernstein's inequality. If Tn is a trigonometric polynomial of degree at
most n, (Tn(O) = I:~ ak sin kO + I:~ bk cos kO), then

II T~ II ~ n II Tn II, (2)

the norm being the supremum norm on the unit circle r. Inequality (2)
becomes an equality for sin nO and cos nO.

Both of these inequalities have the same form: A Banach space and a
finite dimensional subspace M in the domain of the derivative Dare
given-for Markov's inequality M is the n + I-dimensional subspace of
C[-1, 1] of polynomials of degree less than or equal to n, for Bernstein's
inequality M is the 2n + I-dimensional subspace of C(F) of trigonometric
polynomials of degree less than or equal to n-and the conclusion states the
value, respectively n2 and n, of the norm IIDIMII of D restricted to M.

From this point of view it is natural to ask to what extent the constants n 2

and n in inequalities (1) and (2) depend on the classes of ;'unctions,

277
0021-9045/82/030277-09$02.00/0
Copyright :g 1982 by Academic Press, Inc.

All rights of reproduction in any form reserved.



278 ROBERT WHITLEY

polynomials or trigonometric polynomials. In particular, what improvement
is possible, i.e., what is the best possible constant

d~ = inf{ II D 1M II : M an n-dimensional subspace in the domain of D}? (* )
M

This question turns out to have significant contact with several areas of
approximation theory and operator theory.

These numbers d~ also arise when one considers the Kolmogorov n-width
dn , defined for a convex symmetric subset A of a Banach space X by

dn(A; X) = dn(A) = inf sup{d(a, N): a in A,
N a

N an n-dimensional subspace of X}

[11, p. 132]. This measure of how well elements of A can be approximated
by an n-dimensional subspace was introduced by Kolmogorov, who "insists
that the determination of the exact value of dn(A) is important because it
may lead to the discovery of extremal subspaces and therefore to new and
better methods of approximation" [11, p. 133].

One powerful method of obtaining a lower bound for dn(A), due to
Tikhomirov [16], proceeds as follows. If L is a subspace of dimension n + I,
then dn(A)~infNsupx{d(x,N):x in AnL}. By a basic lemma [11, p.I37;
16, p.78; 2], since dim N <dim L, there is an x in L with Ilxll = d(x, N).
Therefore, letting SL denote the unit sphere in L, and setting

bn +l(A) = sup SUp{A ~ 0: ASL ~ A, dim L = n + I} (3)
L A

we obtain

(4)

(Often what we call bn+ 1 in (3) is called bn, so that (4) becomes dn~ bn.)
Tikhomirov calls bn(A) the Bernstein diameter, because these numbers are

"very often encountered in the study of Bernstein-type inequalities" [16,
p.99]. In fact, let B = {f in X: f' is in X, and 11f' II ~ I}, for X either
C[-1, 1] or qT). Then the number d~ of (*) is given by d~ = Ijbn(B; X).
We now compute this number for C[-I, 1].

1. THEOREM. Let M be a subspace of C[-1, I] consisting of
continuously differentiable functions. If the dimension of M is at least n + I,
then there is a non-zero f in M satisfying

11f'11 ~ n Ilfll·
The constant n in (5) is the best possible.

(5)
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Proof Set r l = -1 + lin and rj = rj_ 1 + 21n for j = 2, 3,..., n. The map
of M into En given by f --. (f(r I),...,J(rn» cannot be one-to-one, and thus
there is a nonzero f in M with f(rj) = 0 for all j. This function f attains its
norm on [-1, 1] at a point x. For the correct choice j of index,
Ix - rjl ~ lin. Using the mean value theorem, n Ilfll ~ If(x) - f(rj)11
Ix - rjl = 1f'(~)1 ~ 11f' II·

Set tj = -1 + 2jln, j = 0, 1,..., n. Let e > 0 be given and consider the
function g I defined by

=a,

=-a,

=0,

x ~ to

x=to+e and x=t1-e

x = t I + e and x = t2 - e

x ~ t2 , and linear otherwise,

where a = (21n - e)-I, and we suppose that e < 21n.
Set fl(x) = f~ I g(t) dt. The function fl is non-negative, zero outside

[to,t2], has a maximum of 1 at tl' and for tl~x~t2' fl(x) = 1­
fl(x-2In). For j=O,l,... ,n, define Jj(x)=fl(x+2(j-1)ln). It is
important to note that for j= 0 and for j = n one-half of the function Jj is
shifted off the interval [-1,1].

Take M = sp(fo,JI''''' fn)' For I:. cjJj = f in M, we compute the norm: If
tj ~ x ~ tj+ I' then f(x) = cjJj(x) + cj+ IJj+ I(X) = cjJj(x) + cj+ IJj(X - 21n) =
CjJj(x) + cj+1(1 - Jj(x». (In passing, note that 1 = I:. Jj belongs to M.) As
the range of Jj(x), tj ~ x ~ tj+ I is [0, 1], max{lf(x)l: tj ~ x ~ tj+ II =
max(lcjl,lcj+II). Hence III:.cjJjII=max{lcjl:O~j~n} (consequently,
dimM= n + 1).

Now we compute the norm of f'. For tj~x~tj+l' 1f'(x)l=
ICjgix) +Cj+ I gj+ l(x)1 = ICj gj(x) - cj+ I gix)l. Thus max{lf'(x)l: tj ~ x ~
tj+d = a ICj - cj+ll. Hence III:. cjfJ II = a max{lcj+1 - cjl: 0 ~j ~ n - I} ~
2a Ilfll = n(l - nel2) -I Ilfll, and the fact that the constant n in (3) is best
possible follows. Q.E.D.

To restate Theorem 1: In C[-I, 1], dn+ 1 = n. Note the improvement over
the constant n2 of Markov's theorem.

Theorem 1 is close to Tikhomirov's calculation of dn for WI = {f in
C[-n,n]: f' is in LOO[-n,n], and esssuplf'l~ l} [16, p.81]; indeed,
inequality (5) follows from his result. That n is the best constant requires
additional argument, like that given above, where the idea behind the
construction of the subspace which shows that (5) is sharp is to construct a
subspace M = sp(ho,..., hn ), where the continuous functions hj are differen­
tiable except for a finite number of points, e.g., hi an isoceles triangle of
height 1 and base [to, t2 ], and where (5) holds except at the points of non-



280 ROBERT WHITLEY

differentiability. Then by rounding the corners on the hj you can get (5) to
hold to within e and the hj will be as smooth as you like, in particular they
will be continuously differentiable and so will be in the domain of D.

P. Wojtaszczyk has shown, in a private communication, that there is no
extremal subspace in C[-1, 1] with best constant n in (5). I believe that
Tikhomirov considers WI' rather than the more natural {f in C [-n, n]: f' is
in C[-n, n] and II!' II ,,;;: l}, just to circumvent this fact and obtain extremal
subspaces [16, p. 82], but at the price of changing the range of the
derivative.

2. THEOREM. Let M be a subspace of continuously differentiable
functions on the unit circle r.

(a) If dim M = 2k, then there is a non-zero function f in M with
II!' II ~ 2k/n Ilfli. This constant is best possible.

(b) If dim M = 2k + 1, there is a non-zero f in M with Ilf 'II ~
2k/n Ilfll. Further, given e >°there is a subspace M of dimension 2k + 1
with II!' II ,,;;: (2k + 1 + e)/n Ilfll for all fin M.

Proof First suppose that dim M = 2k, M = sp(fp f2 ,...,f2k)' For
0";;: 0";;: 2n define Z(O) to be the determinant of the 2k X 2k matrix
[fc(exp(i(O + rn/k)))], r the row index, c the column index. The determinant
Z(O) can be obtained from Z(O +n/k) by 2k - 1 row interchanges, so
Z(O) = -Z(O + n/k); it follows that Z(O) has a zero 00 in [0, n/k). Let
a l , ... , a2k be a non-trivial solution to the system of homogeneous equations
which has Z(Oo) as its coefficient determinant. Then f = at/I + ... +a2Ju
is a nonzero element of M with 2k equally spaced zeros rm =
exp(i(Oo + mn/k» m = 1,2,... , 2k. Iff attains its norm at x on r, then, iden­
tifying r with [0,2n], Ix - rjl,,;;: n/2k for some index j. By the mean value
theorem, 2k/n IIfll ,,;;: If(x) - f(r)I/lx - rjl = 1!'(e)I,,;;: Ilf'll·

If dim M = 2k + 1, inequality (b) follows from inequality (a).
The example used to establish the given upper bounds on d~ comes from

the example of Theorem 1 by changing [-1, 1] to [0, 2n] and then iden­
tifying [0, 2n] with r. Note that in this process the two functionsfo andfn in
C [-1, 1] become one function in C(T), lowering the dimension of the
subspace M by one. Q.E.D.

To restate Theorem 2: In CCT), d2k = 2k/n and 2k/n,,;;: d2k + 1 ,,;;: (2k + 1)/n.
Compare these values with Bernstein's inequality. Compare Theorem 2 with
Tikhomirovs calculation of dn for WI = {f in CCT): f' E L CO(T) and
ess sup If' I";;: l} [16, p. 94].

The subspace M = sp(I, sin e, cos e,... , cos kef of dimension 2k + 1
satisfies the Haar condition [3, p. 94] and so each non-zero f in M can have
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at most 2k zeros; therefore the general method of proof of (a) cannot be
extended to get dh+ 1 = (2k + 1)/n. What is the value of d~k+ 1 ?

The value of d~k cannot be attained by a subspace M of dimension 2k. For
if it were attained for a subspace M, then we may take/(xo) = 1= III1I in the
function I constructed in the proof of Theorem 2. Note that on rj ~ X o~ rj + I

I goes from 0 to 1 and back to zero with 11f' II ~ 2k/n. So I must be linear
from rj to X o and from X o to rj+ 1 and therefore is not differentiable at xo'

Look at the most basic property of the sequence d~; in the Banach spaces
C[-1, 1] and C(F) the derivative D is uniformly unbounded in the sense that
d~ tends to infinity. Why? That is, what is the essential property of the
operator D which corresponds to this behavior of d~ ? A good answer would
tell us, without calculation, whether d~ tends to infinity in other Banach
spaces. But deeper than that, a good answer would identify a class of
operators, and this class would probably be interesting and useful as it would
be defined in terms of a natural property, of the basic operator D, which is
suggested by the important Markov and Bernstein's inequalities.

The first step towards answering this question is to note that differen­
tiation is the inverse of integration. And integration is easier to work with
than D, as it is a bounded operator with domain the whole space, while D is
closed and densely defined. Since the indefinite integral is only defined to
within a constant, one must be more precise, choosing a constant a in the
base space and considering Ta defined by Ta/(x) = t I(t) dt. The inverse of
Ta is D a' which is D restricted to those functions I in its domain which
satisfy I(a) = 0, i.e., Da is D together with an initial condition.

Define

d~(Da) = inf{IIDaIMII: M an n-dimensional subspace
M

in the domain of D a }. (6)

3. LEMMA. The inequalities d~ ~ d~(Da) ~ d~+] ~ d~+ ](Da) hold.

Proof First, d~ = inf{ II D 1M II: dim M = n, M in the domain of D} ~
inf{IIDIMII: dimM=n, M in the domain of Da }, since the domain of Da is
contained in the domain of D.

Second, let Na be those I in the domain of D satisfying I(a) = O. If
dim M = n + 1, M in the domain of D, then

(7)

Since dim(MnNa ) is either n or n + 1, the RHS of(7) is bounded below by
d~(Da) or d~+l(Da)' and so by d~(Da)' Hence d~+] ~d~(Da)' Q.E.D.

SO now we will know why d~--> co if we know why d~(Da)--> co.
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The next step is to generalize (*) in the obvious way. Let X and Y be two
Banach spaces and T: X --+ Ya bounded linear operator. For the closed linear
operator S = T- 1

, with domain the range of T, define

d~(S)= inf{IISIMII: dimM=n, M in the domain of Sf. (8)

This could, of course, also be written in terms of Tikhomirov's Bernstein
diameters. We want to rewrite (8) in terms of T.

The injection modulus for a bounded linear operator T: X --+ Y is defined
by [13, p. 26]

j(T) = sup{A.= II Txll;;::: A Ilxll for all x}.

For T one-to-one, j(T) = 1/11 T-111.

4. LEMMA. Let T: X --+ Y be one-to-one, S = T- 1, and d~(S) be as above.
Then

Ild~(S) = sup{j(TIM): dim M = n}. (9)

Proof d~(s) = inf[llT-1IMII: dimM = n] = infM[sup{IIT-1xlllllxll: 0 =1= x
in M}: dimM = n] = infM[sup{IIYII/IITYII: 0 =1= Y in T-1(M)}: dimM = n] =
infN [ I/j(TIN): dim N = n], and the lemma follows. Q.E.D.

If we now focus our attention on T, rather than on S = T- I, then the
requirement that T be one-to-one is superfluous, and we can define, for any
bounded linear operator T: X ---> Y, the numbers

(10)

This brings us into contact with Pietsch's work [14, p. 207], where the
numbers un(T) are introduced and there called the Bernstein numbers of T.
In terms of this formulation, our original question of why d~ tends to infinity
becomes: Why does un(Ta ) tend to zero? To understand this question in
context, recall that on a separable Hilbert space H the operator ideals can be
described in terms of s-numbers sn(T) of an operator T [4, p. 1089]. The
operator T is compact itT sn(T) --+ O. For compact T, sn(T) is the nth eigen­
value An of the positive operator (T*T) 1

/
2. The von Neumann-Schatten

ideals Cp , consisting of all T with L sn(T)P < 00, 0 < p < 00, generalize the
classical trace class (p = 1) and Hilbert-Schmidt (p = 2) ideals. Pietsch's
way of extending this ideal theory to operators on a Banach space is to
replace the sequence P'n} of eigenvalues of (T*T)1/2 by a sequence {sn(T)}
having certain properties.

From the general results of [14], it follows that for T on a Hilbert space,
un(T) --+ 0 itT T is compact. (And an easy calculation for compact T, using
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the spectral theorem for (T*T)1/2, shows that un(T) = An' which also follows
from [14, Theorem 2.1, p. 203].) But the geometry of a Banach space, and
the resulting operator theory, is considerably more complicated, and there
are many distinct choices for {sn(T)}, all agreeing with {An} on H [14,
Theorem 2.1, p. 203]. However, one result which is true in general is that T
compact implies that un(T) -> 0; see below.

In [8] Kato introduced strictly singular operators, a generalization of
compact operators. A good discussion of their use in perturbation theory is
[6]. One definition is that T is strictly singular if it does not have a bounded
inverse on any infinite dimensional subspace [6, p. 76]; a definition which
makes it seem plausible that W = {T: X -> Y: Un(T) -> O} is the class of
strictly singular operators.

5. THEOREM. For T compact, un(T) -> O. If un(T) -> 0, then T is strictly
singular.

Proof The quickest proof is to note that the Gelfand numbers gn(T) -> 0
for T compact [14, Theorem 9.3, p. 220] and gn(T) ~ un(T) [14,
Theorems 4.4, 4.5, p.207]. The following alternate proof indicates a
connection between the numbers un(T) and Kolmogorov's notion of the
capacity of a compact set [11, p. 150]. Since T is compact, the image TSx'
of the unit ball Sx of X, is compact. By the definition of the capacity
C, = 10gN" for each e > 0 there is an e-net {Tx;: IlxJ ~ 1, 1 ~ i ~N,} for
TSx ' There are linear functionals xt with xt(Tx j ) = II Tx;ll, Ilxtll = 1, for
1~ i ~ N,. If M is any subspace of dimension greater than N" there is a
norm one x in M with xt(Tx) = 0 for 1 ~ i ~ N,. For some index j,
II Tx - TxJ ~ e. Hence II Txll ~ e + IITxjl1 = x/(Txj ) + e = Ixt(Txj)­
xt(Tx)1 + e ~ 2e. Thus un(T) ~ 2e for n > Ne.

Suppose that T is not strictly singular, and so has a bounded inverse on an
infinite dimensional subspace N. For M an n-dimensional subspace of N we
have un(T) ~ j(TIM) ~ 1/II(TIN)-III, and un(T) does not tend to zero. Q.E.D.

In answer to the obvious questions raised by Theorem 5:

6. EXAMPLE. (a) There is an operator II which is not compact and yet
has Un(Il) -> O.

(b) There is a strictly singular operator 12 with Un(I2) -,4 O.

Elements in the sequences spaces II and Co will be denoted by
x = (x( 1), x(2), ... ). The injection II: II -> Co is not compact. Assume that
there is a number b > 0 with un(11) > b for all n. Let m be given. By
hypothesis there is a subspace M in II of dimension greater than
[2 2/b]+I+[2 3/b]+I+ ... +[2 rn /b]+1 with 111I xll=llxll",,>bllxll l for
all x in M. There is XI in M with Ilxlll l = 1, and Ilxlll"" > b with Ixl(nl)1 > b.
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Let N I = U: IxU)1 >b/2 2
}. Since L IxIU)1 = 1, N I contains less than

[2 2/b] + 1 integers. Because the dimension of M is greater than [2 2/b] + 1
there is an x 2 in M, IIx2 111 = 1, with xij) = 0 for j in N I . For this X 2 '

Ilx21lro> b, and there is an n2 with Ix2(n 2 )1 > b. Let N2 = {j: Ix2U)1 >b/2 3
}.

Since L Ix2U)1 = 1, N2 contains less than [2 3/b] + 1 integers. Since the
dimension of M is greater than [2 2/b] + 1 + [2 3/b] + 1, there is an x J in M,
Ilx3 111=1, with x 3(j)=0 forj in N I UN2 • For this x 3 ' Ilx3 1lro>b and
IxJCnJ)1 > b. Let NJ = U: IxJCj)1 > b/24

}, a set of fewer than [2 4/b] + 1
integers. Continue, obtaining x ll x 2 '"'' x m• Consider the element L~ xk in M.
For j in N p IL xkU)1 :( 1xiU)1 +Lk "'d IxkU)1 :( 1 + b/2, whereas ifj does not
belong to UN i , then IL xk(j)1 :( b/2. Thus II L xkII ro :( 1 +b/2. On the other
hand,

So we have 1 +b/2 ~ II L xkll ro ~ b II L xkll l ~ mb 2/2, which is a contra­
diction for sufficiently large m.

Let En denote n-dimensional Euclidean space. Let X = (L En)I': an
element x in X is then a sequence {xn}, x n in En, with Ilxll = L Ilxnll < 00.

Let Y = (L En)co: an element Y in Y is then a sequence {Yn}' with Yn in En,
IIYnll--+O, and Ilyll=suPIIYnll. Let 12 be the injection of X into Y. The
quickest way to see that 12 is strictly singular is to note that X is isomorphic
to a subspace of [I and Y is isomorphic to a subspace of Co (15,
pp. 304-306], and 12 is then strictly singular as no infinite dimensional
subspace of [I can be isomorphic to a subspace of co; see, e.g., [10]. Looking
at the action of 12 on En we see that un(12) ~ 1 for each n. Q.E.D.

Whenever the operator TaJ(x) = f~ J(t) dt is compact, we see that
d~ --+ 00. This is true in the spaces C[-I, 1] and C(T) which we considered,
as well as in spaces we have not considered, e.g., LP[5, 12, 16, 171. This
constitutes one reasonable explanation of why d~ tends to infinity, but an
adequate amount of mystery still remains. It is not known whether the set of
operators W= {T: X --+ Y: un(T) --+ O}, trapped between the ideals of compact
and strictly singular operators, is itself an ideal [14, p. 222]. If not always an
ideal, when is it an ideal? When is W the compact operators or the strictly
singular operators? Can W be characterized in some interesting way?

Pietsch [14, p. 220] shows that an operator T is compact iff sn(T) -> a for
sn either the Kolmogorov numbers or the Gelfand numbers. Example 6
suggests the problem of finding a sequence k n of s-numbers with the property
that T is strictly singular iff kn(T) --+ O. .
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